Immuno- and Constitutive Proteasomes Do Not Differ in Their Abilities to Degrade Ubiquitinated Proteins
نویسندگان
چکیده
Immunoproteasomes are alternative forms of proteasomes that have an enhanced ability to generate antigenic peptides. Recently, Seifert and colleagues reported surprising observations concerning the functions of immunoproteasomes and cellular responses to interferon-γ: (1) that immunoproteasomes degrade ubiquitinated proteins faster than the constitutive proteasomes, (2) that polyubiquitin conjugates accumulate after interferon-γ treatment but then are preferentially degraded by immunoproteasomes, and (3) that immunoproteasome deficiency causes the formation of inclusions and more severe experimental autoimmune encephalomyelitis (EAE). In contrast, we find that polyubiquitin conjugates do not transiently accumulate following IFNγ-treatment and that immunoproteasomes do not prevent the formation of intracellular inclusions or protect against EAE. Furthermore, purified 26S constitutive and immunoproteasomes bind ubiquitin conjugates similarly and degrade them at similar rates. We conclude that, although immunoproteasomes can increase the generation of peptides appropriate for MHC class I presentation, they do not degrade ubiquitinated proteins more efficiently than constitutive particles.
منابع مشابه
Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
Although cellular proteins conjugated to K48-linked Ub chains are targeted to proteasomes, proteins conjugated to K63-ubiquitin chains are directed to lysosomes. However, pure 26S proteasomes bind and degrade K48- and K63-ubiquitinated substrates similarly. Therefore, we investigated why K63-ubiquitinated proteins are not degraded by proteasomes. We show that mammalian cells contain soluble fac...
متن کاملAutoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates.
Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and th...
متن کاملQuantitative analysis of prion-protein degradation by constitutive and immuno-20S proteasomes indicates differences correlated with disease susceptibility.
The main part of cytosolic protein degradation depends on the ubiquitin-proteasome system. Proteasomes degrade their substrates into small peptide fragments, some of which are translocated into the endoplasmatic reticulum and loaded onto MHC class I molecules, which are then transported to the cell surface for inspection by CTL. A reliable prediction of proteasomal cleavages in a given protein ...
متن کاملcAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins.
Although rates of protein degradation by the ubiquitin-proteasome pathway (UPS) are determined by their rates of ubiquitination, we show here that the proteasome's capacity to degrade ubiquitinated proteins is also tightly regulated. We studied the effects of cAMP-dependent protein kinase (PKA) on proteolysis by the UPS in several mammalian cell lines. Various agents that raise intracellular cA...
متن کاملDynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62.
Proteotoxicity resulting from accumulation of damaged/unwanted proteins contributes prominently to cellular aging and neurodegeneration. Proteasomal removal of these proteins upon covalent polyubiquitination is highly regulated. Recent reports proposed a role for autophagy in clearance of diffuse ubiquitinated proteins delivered by p62/SQSTM1. Here, we compared the turnover dynamics of endogeno...
متن کامل